Energy metabolism inhibitors - a new group of antituberculous drugs.

Authors

  • Nicolae BACINSCHI IP State University of Medicine and pharmacy, Nicolae Testemitanu”
  • Elena TUDOR IMSP Institute of Phthisiopulmonology "Chiril Draganiuc"
  • Mihaela TĂRĂBURCĂ IP State University of Medicine and pharmacy, Nicolae Testemitanu”

DOI:

https://doi.org/10.52692/1857-0011.2021.3-71.30

Keywords:

bioenergetic inhibitors, mycobacteria with latent metabolic state, multiple resistance, extended resistance

Abstract

The treatment of tuberculosis, despite the intensification of research into new drugs, remains a current problem of phthisiopulmonology due to the emergence of mycobacteria with multiple and extensive resistance, decreased patient adherence to treatment due to long duration of treatment and side effects, transformation of mycobacteria into latent metabolic forms. Elucidation of new compounds influencing metabolism and energy processes opens new perspectives to optimize the treatment of TB-MDR and TB-XDR, as well as the development of new therapeutic regimens that would shorten the duration of treatment by reducing the incidence of adverse reactions and increasing patient compliance.

Author Biographies

Nicolae BACINSCHI, IP State University of Medicine and pharmacy, Nicolae Testemitanu”

dr. hab. în șt. med., prof. univer.,

Elena TUDOR, IMSP Institute of Phthisiopulmonology "Chiril Draganiuc"

dr. în șt. med., conf. cercetător, membru-coresp. AȘMM

Mihaela TĂRĂBURCĂ, IP State University of Medicine and pharmacy, Nicolae Testemitanu”

studentă

References

Foo CS-Y., Pethe K., Lupien A. Oxidative Phosphorylation-an Update on a New, Essential Target Space for Drug Discovery in Mycobacterium tuberculosis. Applied Sciences. 2020; 10(7):2339. doi.org/10.3390/app10072339.

Hasenoehrl E.J., Wiggins T.J., Berney M. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Front Cell Infect Microbiol. 2021 Jan 11;10:611683. doi: 10.3389/fcimb.2020.611683.

BeitesT., O’Brien K., Tiwari D. et al. Plasticity of the Mycobacterium tuberculosis respiratory chain and its impact on tuberculosis drug development. Nat Commun 2019; 10, 4970. doi.org/10.1038/s41467-019-12956-2

Vilchèze C., Weinrick B., Leung L. W., Jacobs W.R. Plasticity of Mycobacterium tuberculosis NADH dehydrogenases and their role in virulence. Proceedings of the National Academy of Sciences of the United States of America. 2018; 115(7), 1599-1604. doi.org/10.1073/pnas.1721545115.

Xu J., Wang B., Fu L. et al. In Vitro and In Vivo Activities of the Riminophenazine TBI-166 against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2019;63(5):e02155-18. Published 2019 Apr 25. doi:10.1128/AAC.02155-18.

Lu Y., Zheng M., Wang B. et al. Clofazimine analogs with efficacy against experimental tuberculosis and reduced potential for accumulation. Antimicrob Agents Chemother. 2011;55(11):5185-5193. doi:10.1128/AAC.00699-11

Hartman T., Weinrick B., Vilchèze C. et al. Succinate dehydrogenase is the regulator of respiration in Mycobacterium tuberculosis. PLoS Pathog. 2014 Nov 20; 10(11): e1004510. doi: 10.1371/journal.ppat.1004510

Eoh H., Rhee K.Y. Multifunctional essentiality of succinate metabolism in adaptation to hypoxia in Mycobacterium tuberculosis. PNAS April 16, 2013 110 (16) 6554-6559; doi.org/10.1073/pnas.1219375110.

Dhiman R.K., Pujari V., Kincaid J.M. et al. Characterization of MenA (isoprenyl diphosphate:1,4-dihydroxy-2-naphthoate isoprenyltransferase) from Mycobacterium tuberculosis. PLoS One. 2019;14(4):e0214958. doi:10.1371/journal.pone.0214958.

Hasenoehrl E.J., Wiggins T.J., Berney M. Bioenergetic Inhibitors: Antibiotic Efficacy and Mechanisms of Action in Mycobacterium tuberculosis. Front Cell Infect Microbiol. 2021 Jan 11; 10:611683. doi: 10.3389/fcimb.2020.611683.

Sukheja P., Kumar P., Mittal N. et al. A Novel Small-Molecule Inhibitor of the Mycobacterium tuberculosis Demethylmenaquinone Methyltransferase MenG Is Figura 2. Reprezentarea schematică a lanțului transportator de electroni al Mtb și inhibitorii acestuia [Hasenoehrl 2021]. Științe Medicale 63 Bactericidal to Both Growing and Nutritionally Deprived Persister. Cells. mBio. 2017 Feb 14;8(1):e02022-16. doi:10.1128/mBio.02022-16.

Lu X., Zhou R., Sharma I. et al. Stable analogues of OSB-AMP: potent inhibitors of MenE, the o-succinylbenzoate-CoA synthetase from bacterial menaquinone biosynthesis.Chembiochem. 2012 Jan 2;13(1):129-36. doi:10.1002/cbic.201100585.

Hamamoto H., Urai M., Ishii K.et al. Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nat Chem Biol. 2015 Feb;11(2):127-33. doi:10.1038/nchembio.1710.

Cook G.M., Hards K., Vilchèze C. et al. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria. Microbiol Spectr. 2014;2(3): doi:10.1128/microbiolspec.MGM2-0015-2013.

Sindhu T., Debnath P. Cytochrome bc1-aa3 oxidase supercomplex as emerging and potential drug target against tuberculosis. Curr Mol Pharmacol. 2021 Sep 28. doi: 10.2174/1874467214666210928152512.

Iqbal I.K., Bajeli S., Akela A.K. et al. Bioenergetics of Mycobacterium: An Emerging Landscape for Drug Discovery. Pathogens. 2018 Feb 23;7(1):24. doi: 10.3390/pathogens7010024.

Lamont E.A., Dillon N.A., Baughn A.D. The Bewildering Antitubercular Action of Pyrazinamide. Microbiol Mol Biol Rev. 2020 Mar 4;84(2):e00070-19. doi:10.1128/MMBR.00070-19.

Conradie F., Diacon A.H., Ngubane N.et al.Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N.Engl. J. Med. 2020 Mar 5;382(10):893-902. doi: 10.1056/NEJMoa1901814.

Global tuberculosis report 202. Geneva: World Health Organization; 202. Licence: CC BY-NC-SA 3.0 IGO.

Global tuberculosis report 2021. Geneva: World Health Organization; 2021. Licence: CC BY-NC-SA 3.0 IGO.

Bald D., Villellas C., Lu P., Koul A. Targeting Energy Metabolism in Mycobacterium tuberculosis, a New Paradigm in Antimycobacterial Drug Discovery. mBio. 2017 Apr 11;8(2):e00272-17. doi: 10.1128/mBio.00272-17.

Cook G.M., Hards K., Dunn E. et al. Oxidative Phosphorylation as a Target Space for Tuberculosis: Success,Caution, and Future Directions. Microbiol Spectr.2017 Jun; 5(3):10.1128/microbiolspec.TBTB2-0014-2016. doi: 10.1128/microbiolspec.

Pethe K., Bifani P., Jang J. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med. 2013 Sep;19(9):1157-60. doi: 10.1038/nm.3262.

Rybniker J., Vocat A., Sala C.et al. Lansoprazole is an antituberculous prodrug targeting cytochrome bc1.Nat Commun.2015Jul9;6:7659.doi: 10.1038/ncomms8659.

Yates T.A., Tomlinson L.A., Bhaskaran K. et al. Lansoprazole use and tuberculosis incidence in the United Kingdom Clinical Practice Research Datalink: A population based cohort. PLoS Med. 2017 Nov21;14(11):e1002457.doi: 10.1371/journal.pmed.1002457.

Meunier B., Madgwick S.A., Reil E.et al. New inhibitors of the quinol oxidation sites of bacterial cytochromes bo and bd. Biochemistry. 199534(3), 1076-1083.

Lee B.S., Hards K., Engelhart C.A.et al. Dual inhibition of the terminal oxidases eradicates antibiotic-tolerant Mycobacterium tuberculosis. EMBO Mol Med. 2021 Jan 11;13(1):e13207. doi: 10.15252/emmm.202013207.

Fisher R.A., Teller E. Clinical experience with ataractic therapy in tuberculous psychiatric patients. Dis Chest. 1959 Feb;35(2):134-9. doi: 10.1378/chest.35.2.134.

Machado D., Pires D., Perdigão J et al. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis. PLoS One. 2016 Feb 26; 11(2): e0149326. doi: 10.1371/journal.pone.0149326.

Dutta N.K., Mazumdar K., Dastidar S.G.et al. New patentable use of an old neuroleptic compound thioridazine to combat tuberculosis: a gene regulation perspective. Recent Pat Antiinfect Drug Discov. 2011 May;6(2):128-38. doi: 10.2174/157489111796064597.

Amaral L., Viveiros M. Thioridazine: A Non-Antibiotic Drug Highly Effective, in Combination with First Line Anti-Tuberculosis Drugs, against Any Form of Antibiotic Resistance of Mycobacterium tuberculosis Due to Its Multi-Mechanisms of Action. Antibiotics (Basel). 2017 Jan 14;6(1):3. doi: 10.3390/antibiotics6010003.

Dutta N.K., Pinn M.L., Karakousis P.C. Reduced emergence of isoniazid resistance with concurrent use of thioridazine against acute murine tuberculosis. Antimicrob Agents Chemother. 2014 Jul;58(7):4048-53. doi:10.1128/AAC.02981-14.

Abbate E., Vescovo M., Natiello M.et al. Successful alternative treatment of extensively drug-resistant tuberculosis in Argentina with a combination of linezolid, moxifloxacin and thioridazine. J Antimicrob Chemother. 2012 Feb;67(2):473-7. doi: 10.1093/jac/dkr500.

Mogi T., Kawakami T., Arai H.et al. Siccanin rediscovered as a species-selective succinate dehydrogenase inhibitor. J. Biochem. 2009 Sep;146(3):383-7. doi: 10.1093/jb/mvp085.

Nikonenko B.V., Protopopova M., Samala R.et al.Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs. Antimicrob Agents Chemother. 2007;51(4):1563-1565. doi:10.1128/AAC.01326-06.

Jia L., Noker P.E., Piazza G.A. et al. Pharmacokinetics and pharmacodynamics of Phor21-betaCG(ala), a lytic peptide conjugate. J Pharm Pharmacol. 2008;60(11):1441-1448. doi:10.1211/jpp.60.11.0004.

Galván A.E., Chalón M.C., Ríos Colombo N.S.et al.Microcin J25 inhibits ubiquinol oxidase activity of purifiedcytochrome bd-I from Escherichia coli. Biochimie. 2019May;160:141-147. doi: 10.1016/j.biochi.2019.02.007.

Kalia N.P., Hasenoehrl E.J., Ab Rahman N.B.et al. Exploiting the synthetic lethality between terminal respiratory oxidases to kill Mycobacterium tuberculosis and clear host infection. Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7426-7431. doi: 10.1073/pnas.1706139114.

Moosa A., Lamprecht D.A., Arora K.et al. Susceptibility of Mycobacterium tuberculosis Cytochrome bd Oxidase Mutants to Compounds Targeting the Terminal Respiratory Oxidase, Cytochrome c. Antimicrob Agents Chemother. 2017 Sep 22; 61(10): e01338-17. doi: 10.1128/AAC.01338-17.

Published

2021-11-17

Issue

Section

Research Article