THE SIGNIFICANCE OF THE QUALITY OF CONSUMED FATS AND HYPOTHERMAL STIMULATION IN ANTI-INFLAMMATORY MECHANISMS AND IN THE PREVENTION OF OBESITY

Authors

  • Vasile FEDAȘ Institute of Physiology and Sanocreatology

DOI:

https://doi.org/10.52692/1857-0011.2023.1-75.28

Keywords:

lipid metabolism, hypothermic stimulation, inflammation, brown adipose tissue, polyunsaturated fatty acids

Abstract

An overview analysis highlighting the possibilities of solving the problem of preventing the formation of an obesoand diabetogenic environment, preventing inflammatory processes in adipose tissue, imbalance in the mechanisms of neuroendocrine interactions of relationships based on an integrated approach, characterized by a harmonious combination of individualized correction of the applied diet with hypothermic stimulation.

Author Biography

Vasile FEDAȘ, Institute of Physiology and Sanocreatology

Postdoctoral fellowship

References

Agabiti-Rosei C., De Ciuceis C., Rossini C., Porteri E., Rodella L.F., Withers S.B., et al. Anticontractile activity of perivascular fat in obese mice and the effect of longterm treatment with melatonin. J Hypertens. 2014; 32(6): p. 1264–1274.

Bes-Rastrollo M. et al. Predictors of weight gain in a Mediterranean cohort: the Seguimiento Universidad de Navarra Study. Am J Clin Nutr. 2006; 83(2): p. 362–370.

Bi P., Shan T., Liu W., Yue F., Yang X., Liang X.R., et al. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat Med. 2014; 20(8): p. 911–918.

Bjørndal B., Burri L., Staalesen V., Skorve J., Berge R.K. Different adipose depots: Their role in the development of metabolic syndrome and mitochondrial response to hypolipidemic agents. J. Obes. 2011; 2011.

Bouillaud F., Ricquier D., Thibault J., Weissenbach J. Molecular approach to thermogenesis in brown adipose tissue: cDNA cloning of the mitochondrial uncoupling protein. Proc. Natl. Acad. Sci. USA. 1985; 82: p. 445–448.

Brown P.J., Konner M. An anthropological perspective on obesity. Ann N Y Acad Sci. 1987; 499(1): p. 29–46.

Cannon B., Nedergaard J. Brown adipose tissue: Function and physiological significance. Physiol. Rev. 2004; 84: p. 277–359.

Carpentier A.C., Blondin D.P., Virtanen K.A., Richard D., Haman F., Turcotte E.E. Brown Adipose Tissue Energy Metabolism in Humans. Front. Endocrinol. (Lausanne) 2018; 9: p. 447.

Cazeils J.L., Bouillier-Oudot M., Auvergne A., Candau M., Babile R. Lipid composition of hepatocyte plasma membranes from geese overfed with corn. Lipids. 1999; 34: p. 937–942.

Contreras C., Gonzalez F., Fernø J., Diéguez C., Rahmouni K., Nogueiras R., López M. The brain and brown fat. Ann. Med. 2015; 47: p. 150–168.

Crane J.D., Palanivel R., Mottillo E.P., Bujak A.L., Wang H., Ford R.J., et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat Med. 2015; 21(2): p. 166–172.

da Silva C.P.V., Hernández-Saavedra D., White J.D., and Stanford K.I. Cold and Exercise: Therapeutic Tools to Activate Brown Adipose Tissue and Combat Obesity. Biology (Basel). 2019; 8(1): p. 9.

Fabbiano S., Suarez-Zamorano N., Rigo D., Veyrat-Durebex C., Stevanovic Dokic A., Colin D.J., et al. Caloric restriction leads to browning of white adipose tissue through type 2 immune signaling. Cell Metab. 2016; 24(3): p. 434–446.

Fedorenko A., Lishko P.V., Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell. 2012; 151: p. 400–413.

Fisher F.M., Kleiner S., Douris N., Fox E.C., Mepani R.J., Verdeguer F., et al. FGF21 regulates PGC1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012; 26(3): p. 271–281.

French S.A. et al. Predictors of weight change over two years among a population of working adults: the Healthy Worker Project. Int J Obes Relat Metab Disord. 1994; 18(3): p. 145–154.

Fukuchi S., Hamaguchi K., Seike M., Himeno K., Sakata T., Yoshimatsu H. Role of fatty acid composition in the development of metabolic disorders in sucrose-induced obese rats. Exp Biol Med (Maywood). 2004; 229: p. 486– 493.

García-Lorda P. [Role of lipid intake in obesity]. [Article in Spanish]. Nutr Hosp. 2002 Feb; 17 Suppl 1: p. 67-72.

Giugliano D., Ceriello A., and Esposito K. The effects of diet on inflammation: emphasis on the metabolic syndrome. Journal of the American College of Cardiology. 2006; 48(4): p. 677–685.

Henneberg M, Grantham J. Obesity – a natural consequence of human evolution. Anthropol Rev. 2014; 77(1): p. 1–10.

Hodge A.M., English D.R., O’Dea K., Sinclair A.J., Makrides M., Gibson R.A., Giles G.G. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr. 2007; 86: p. 189–197.

Houdali B., Wahl H.G., Kresi M., Nguyen V., Haap M., Machicao F., Ammon H.P., Renn W., Schleicher E.D., et al. Glucose oversupply increases Delta9-desaturase expression and its metabolites in rat skeletal muscle. Diabetologia. 2003; 46: p. 203–212.

Jun W., Paul C., Spiegelman B.M. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 2013; 27(3): p. 234–250.

Khan S.A., Ali A., Khan S.A., Zahran S.A., Damanhouri G., Azhar E., and Qadri I. Unraveling the Complex Relationship Triad between Lipids, Obesity, and Inflammation. Mediators of Inflamation. Hundawi Publishing Corporation. 2014; 2014: Article ID 502749: 16 Pages.

Kim Y.C., Gomez F.E., Fox B.G., Ntambi J.M. Differential regulation of the stearoyl-CoA desaturase genes by thiazolidinediones in 3T3–L1 adipocytes. J Lipid Res. 2000; 41: p. 1310–1316.

Kis M., Zsiros O., Farkas T., Wada H., Nagy F., Gombos Z. Light-induced expression of fatty acid desaturase genes. Proc Natl Acad Sci USA. 1998; 95: p. 4209–4214.

Kozak L.P. Brown fat and the myth of diet-induced thermogenesis. Cell Metab. 2010; 11: p. 263–267.

Lake A., Townshend T. Obesogenic environments: exploring the built and food environments. J R Soc Promot Health. 2006; 126(6): p. 262-267.

Lee Y., Naseem R.H., Duplomb L., Park B.H., Garry D.J., Richardson J.A., Schaffer J.E., Unger R.H. Hyperleptinemia prevents lipotoxic cardiomyopathy in acyl CoA synthase transgenic mice. Proc Natl Acad Sci USA. 2004; 101: p. 13624–13629.

Listenberger L.L., Han X., Lewis S.E., Cases S., Farese R.V.Jr., Ory D.S., Schaffer J.E. Triglyceride accumulation protects against fatty acidinduced lipotoxicity. Proc Natl Acad Sci USA. 2003; 100: p. 3077–3082.

McAllister E.J., Dhurandhar N.V., Keith S.W., Aronne L.J., Barger J., Baskin M., Benca R.M., Biggio J., Boggiano M.M., Eisenmann J.C., et al. Ten putative contributors to the obesity epidemic. Crit. Rev. Food Sci. Nutr. 2009; 49: p. 868–913.

Natasa P., Walden T.B., Shabalina I.G., Timmons J.A., Barbara C., Jan N. Chronic peroxisome proliferatoractivated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocyte. J Biol Chem. 2010; 285(10): p. 7153–7164.

Nguyen P., Leray V., Diez M., Serisier S., Bloc’h J.L., Siliart B., Dumon H. Liver lipid metabolism. J. Anim. Physiol. Anim. Nutr. 2008; 92: p. 272–283.

Norris P.C. and Dennis E.A. Omega-3 fatty acids cause dramatic changes in TLR4 and purinergic eicosanoid signaling. Proceedings of the National Academy of Sciences of the United States of America. 2012; 109(22): p. 8517–8522.

Nowak J.Z. Anti-inflammatory pro-resolving derivatives of omega-3 and omega-6 polyunsaturated fatty acids. Postepy Higieny i Medycyny Doswiadczalnej. 2010; 64: p. 115–132.

Ntambi J.M., Miyazaki M. Regulation of stearoylCoA desaturases and role in metabolism. Prog Lipid Res. 2004; 43: p. 91–104.

Oelkrug R, Polymeropoulos ET, Jastroch M. Brown adipose tissue: physiological function and evolutionary significance. J Comp Physiol B. 2015; 185(6): p. 587–606.

Oliver E., McGillicuddy F., Phillips C., Toomey S., and Roche H.M. Postgraduate Symposium: the role of inflammation and macrophage accumulation in the development of obesity-induced type 2 diabetes mellitus and the possible therapeutic effects of long-chain n-3 PUFA. Proceedings of the Nutrition Society. 2010; 69(2): p. 232–243.

Pedersen B.K. and Febbraio M.A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 2008; 88: p. 1379-1406.

Ravussin Y., Xiao C., Gavrilova O., and Reitman M.L. Effect of Intermittent Cold Exposure on Brown Fat Activation, Obesity, and Energy Homeostasis in Mice. PLoS One. 2014; 9(1): e85876.

Rosell M. et al. Weight gain over 5 years in 21,966 meat-eating, fish-eating, vegetarian, and vegan men and women in EPIC-Oxford. Int J Obes. 2006; 30(9): p. 1389– 1396.

Salomaa V., Ahola I., Tuomilehto J., Aro A., Pietinen P., Korhonen H.J., Penttila I. Fatty acid composition of serum cholesterol esters in different degrees of glucose intolerance: a population-based study. Metabolism. 1990; 39: p. 1285–1291.

Schulz M. et al. Food groups as predictors for short-term weight changes in men and women of the EPICPotsdam cohort. J Nutr. 2002; 132(6): p. 1335–1340.

Seale P., Bjork B., Yang W., Kajimura S., Chin S., Kuang S., et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008; 454(7207): p. 961–967.

Serhan C.N. Lipoxins and aspirin-triggered 15-epilipoxins are the first lipid mediators of endogenous antiinflammation and resolution. Prostaglandins Leukotrienes and Essential Fatty Acids. 2005; 73(3-4): p. 141–162.

Shabalina I.G., Petrovic N., de Jong J.M., Kalinovich A.V., Cannon B., Nedergaard J. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 2013; 5(5): p. 1196–1203.

Sharon L., Jennifer H., Yuan X., Takahiro S., Ziquan C., Patrik A., et al. Cold-induced activation of brown adipose tissue and adipose angiogenesis in mice. Nat Protoc. 2012; 7(3): p. 606–615.

Smilowitz J.T., Wiest M.M., Watkins S.M., Teegarden D., Zemel M.B., German J.B., and Van Loan M.D. Lipid Metabolism Predicts Changes in Body Composition during Energy Restriction in Overweight Humans. The Journal of Nutrition. American Society for Nutrition. 2009; 139(2): p. 222-229.

Stanford K.I., Goodyear L.J. Exercise regulation of adipose tissue Adipocyte. 2016; 5(2): p. 153-162.

Sumithran P., Proietto J. The defence of body weight: a physiological basis for weight regain after weight loss. Clin Sci (Lond). 2013; 124(4): p. 231-241.

Tishinsky J.M., Gulli R.A., Mullen K.L., Dyck D.J., and Robinson L.E. Fish oil prevents high-saturated fat dietinduced impairments in adiponectin and insulin response in rodent soleus muscle. American Journal of Physiology: Regulatory Integrative and Comparative Physiology. 2012; 302(5): p. R598–R605.

Titos E. and Clària J. Omega-3-derived mediators counteract obesity-induced adipose tissue inflammation. Prostaglandins and Other Lipid Mediators. 2013; 107: p. 77-84.

van der Lans A.A., Hoeks J., Brans B., Vijgen G.H., Visser M.G., et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest. 2013; 123: p. 3395–3403.

Vergnaud A. et al. Meat consumption and prospective weight change in participants of the EPICPANACEA study. Am J Clin Nutr. 2010; 92(2): p. 398–407.

Villarroya F., Vidal-Puig A. Beyond the sympathetic tone: The new brown fat activators. Cell Metab. 2013; 17: p. 638–643.

Wang L., Folsom A.R., Zheng Z.J., Pankow J.S., Eckfeldt J.H. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr. 2003; 78: p. 91–98.

Waters K.M., Miller C.W., Ntambi J.M. Localization of a negative thyroid hormone-response region in hepatic stearoyl-CoA desaturase gene 1. Biochem Biophys Res Commun. 1997; 233: p. 838–843.

Wu J., Bostrom P., Sparks L.M., Ye L., Choi J.H., Giang A.H., et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012; 150(2): p. 366–376.

Xu Z., You W., Zhou Y., Chen W., Wang Y. & Shan T. Cold-induced lipid dynamics and transcriptional programs in white adipose tissue. BMC Biology. 2019; 17(1): Article number: 74.

Yoneshiro T., Aita S., Matsushita M., Kayahara T., Kameya T., et al. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013; 123: p. 3404–3408.

You W. & Henneberg M. Meat consumption providing a surplus energy in modern diet contributes to obesity prevalence: an ecological analysis. BMC Nutrition. 2016; 2: Article number: 22: p. 2–11.

Yu J., Zhang S., Cui L., et al. Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 2015; 1853(5): p. 918-928.

Zeng W., Pirzgalska R.M., Pereira M.M., Kubasova N., Barateiro A., Seixas E., Lu Y.H., Kozlova A., Voss H., Martins G.G., et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell. 2015; 163: p. 84–94.

Zhu Q., Glazier B.J., Hinkel B.C., Cao J., Liu L., Liang C. and Shi H. Neuroendocrine Regulation of Energy Metabolism Involving Different Types of Adipose Tissues. Int. J. Mol. Sci. 2019; 20: 2707: p. 1–22.

Downloads

Published

2023-06-01

Issue

Section

Research Article

Categories