THE ROLE OF MICRO-RNA IN ATHEROSCLEROSIS

Authors

  • Veronica SARDARI State University of Medicine and Pharmacy”Nicolae Testemitanu”
  • Roman MUNTEANU State University of Medicine and Pharmacy”Nicolae Testemitanu”
  • Dan USHURELU State University of Medicine and Pharmacy”Nicolae Testemitanu”
  • Valeriana PANTEA State University of Medicine and Pharmacy”Nicolae Testemitanu”
  • Olga TAGADIUC State University of Medicine and Pharmacy”Nicolae Testemitanu”
  • Azamat BAIRAMCULOV State University of Medicine and Pharmacy”Nicolae Testemitanu”

DOI:

https://doi.org/10.52692/1857-0011.2024.3-80.36

Keywords:

micro-RNA, atherosclerosis, diagnosis, biomarkers, lipoproteins, treatment

Abstract

Introduction. Micro-RNA (miRNA) are small ribonucleic acid (RNA) molecules that play a crucial role in regulating gene expression in eukaryotic cells. Currently, circulating microRNAs are considered promising biomarkers for diagnosis and potential therapeutic targets for treating cardiovascular diseases, including atherosclerosis. Materials and Methods. A literature review of the last 10 years was conducted, using 30 bibliographic sources, including those from the “Nicolae Testemițanu” USMF Scientific Medical Library and electronic libraries such as PubMed, Elsevier, Cambridge Journals Online, Hinari, Medline, and MedScape. Results. A number of studies have estimated the major role of miRNAs in the diagnosis and treatment of atherosclerosis. Hepatic overexpression of miR-30c significantly reduced atherosclerosis by decreasing cholesterol and ApoB-lipoprotein synthesis. Another study supports the conclusion that miR-30c-5p substantially protects human aortic endothelial cells from the cell death through pyroptosis. In one study, the administration of miR-23a-5p had a major impact on protection against atherosclerosis progression and improving plaque stability in dyslipidemic mice. Conclusions. miRNAs play a major role in regulating molecular processes that contribute to the development and progression of atherosclerosis, including apoptosis, inflammation, and lipoprotein metabolism. Identifying specific microRNAs as biomarkers and therapeutic targets opens new perspectives for the development of more effective treatments and early diagnostic methods for atherosclerosis.

Author Biographies

Veronica SARDARI, State University of Medicine and Pharmacy”Nicolae Testemitanu”

PhD med. sci., univ. assistant

Roman MUNTEANU , State University of Medicine and Pharmacy”Nicolae Testemitanu”

student

Dan USHURELU , State University of Medicine and Pharmacy”Nicolae Testemitanu”

asist. univer.

Valeriana PANTEA , State University of Medicine and Pharmacy”Nicolae Testemitanu”

PhD med. sci., researcher

Olga TAGADIUC , State University of Medicine and Pharmacy”Nicolae Testemitanu”

hab. MD, univ. prof.

Azamat BAIRAMCULOV, State University of Medicine and Pharmacy”Nicolae Testemitanu”

Introduction. Micro-RNA (miRNA) are small ribonucleic acid (RNA) molecules that play a crucial role in regulating gene expression in eukaryotic cells. Currently, circulating microRNAs are considered promising biomarkers for diagnosis and potential therapeutic targets for treating cardiovascular diseases, including atherosclerosis. Materials and Methods. A literature review of the last 10 years was conducted, using 30 bibliographic sources, including those from the “Nicolae Testemițanu” USMF Scientific Medical Library and electronic libraries such as PubMed, Elsevier, Cambridge Journals Online, Hinari, Medline, and MedScape. Results. A number of studies have estimated the major role of miRNAs in the diagnosis and treatment of atherosclerosis. Hepatic overexpression of miR-30c significantly reduced atherosclerosis by decreasing cholesterol and ApoB-lipoprotein synthesis. Another study supports the conclusion that miR-30c-5p substantially protects human aortic endothelial cells from the cell death through pyroptosis. In one study, the administration of miR-23a-5p had a major impact on protection against atherosclerosis progression and improving plaque stability in dyslipidemic mice. Conclusions. miRNAs play a major role in regulating molecular processes that contribute to the development and progression of atherosclerosis, including apoptosis, inflammation, and lipoprotein metabolism. Identifying specific microRNAs as biomarkers and therapeutic targets opens new perspectives for the development of more effective treatments and early diagnostic methods for atherosclerosis.

References

Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med. 2015;278(5):483. doi:10.1111/JOIM.12406

Jackson AO, Regine MA, Subrata C, Long S. Molecular mechanisms and genetic regulation in atherosclerosis. Int J Cardiol Hear Vasc. 2018;21:36. doi:10.1016/J. IJCHA.2018.09.006

Dani SS, Lone AN, Javed Z, et al. Trends in Premature Mortality From Acute Myocardial Infarction in the United States, 1999 to 2019. J Am Heart Assoc. 2022;11(1):21682. doi:10.1161/JAHA.121.021682

Zhou SS, Jin JP, Wang JQ, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 2018 397. 2018;39(7):1073-1084. doi:10.1038/ aps.2018.30

Çakmak HA, Demir M. MicroRNA and Cardiovascular Diseases. Balkan Med J. 2020;37(2):60. doi:10.4274/ BALKANMEDJ.GALENOS.2020.2020.1.94

Colpaert RMW, Calore M. MicroRNAs in cardiac diseases. Cells. 2019;8(7). doi:10.3390/cells8070737

Bhaskaran M, Mohan M. MicroRNAs: History, Biogenesis, and Their Evolving Role in Animal Development and Disease. Vet Pathol. 2014;51(4):759. doi:10.1177/0300985813502820

Siasos G, Bletsa E, Stampouloglou PK, et al. MicroRNAs in cardiovascular disease. Hell J Cardiol. 2020;61(3):165-173. doi:10.1016/j.hjc.2020.03.003

Feinberg MW, Moore KJ. MicroRNA regulation of atherosclerosis. Circ Res. 2016;118(4):703. doi:10.1161/CIRCRESAHA.115.306300

Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. MicroRNA-30c reduces hyperlipidemia and atherosclerosis by decreasing lipid synthesis and lipoprotein secretion. Nat Med. 2013;19(7):892. doi:10.1038/NM.3200

da Silva DCP, Carneiro FD, Almeida KC de, Bottino CFDS. Role of miRNAs on the Pathophysiology of CardiovascularDiseases. Arq Bras Cardiol. 2018;111(5):738. doi:10.5935/ABC.20180215

Lao TD, Huyen Le TA. MicroRNAs: Biogenesis, Functions and Potential Biomarkers for Early Screening, Prognosis and Therapeutic Molecular Monitoring of Nasopharyngeal Carcinoma. Process 2020, Vol 8, Page 966. 2020;8(8):966. doi:10.3390/PR8080966

DiStefano JK. Angiopoietin-like 8 (ANGPTL8) expression is regulated by miR-143-3p in human hepatocytes. Gene. 2019;681:1. doi:10.1016/J. GENE.2018.09.041

Yang S, Ye Z ming, Chen S, et al. MicroRNA-23a- 5p promotes atherosclerotic plaque progression and vulnerability by repressing ATP-binding cassette transporter A1/G1 in macrophages. J Mol Cell Cardiol. 2018;123:139-149. doi:10.1016/J.YJMCC.2018.09.004

Price NL, Rotllan N, Canfrán-Duque A, et al. Genetic dissection of the impact of miR-33a and miR-33b during the progression of atherosclerosis. Cell Rep. 2017;21(5):1317. doi:10.1016/J.CELREP.2017.10.023

Zhang F, Zhao J, Sun D, Wei N. MiR-155 inhibits transformation of macrophages into foam cells via regulating CEH expression. Biomed Pharmacother. 2018;104:645-651. doi:10.1016/J. BIOPHA.2018.05.068

Sun X, He S, Wara AKM, et al. Systemic Delivery of MicroRNA-181b Inhibits Nuclear Factor- κB Activation, Vascular Inflammation, and Atherosclerosis in Apolipoprotein E–Deficient Mice. Circ Res. 2014;114(1):32. doi:10.1161/ CIRCRESAHA.113.302089

Lin J, He S, Sun X, et al. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10. FASEB J. 2016;30(9):3216-3226. doi:10.1096/FJ.201500163R/-/DC1

Knoka E, Trusinskis K, Mazule M, et al. Circulating plasma microRNA-126, microRNA-145, and microRNA-155 and their association with atherosclerotic plaque characteristics. J Clin Transl Res. 2020;5(2):60. doi:10.18053/jctres.05.201902.002

Li S, Geng Q, Chen H, et al. The potential inhibitory effects of miR-19b on vulnerable plaque formation via the suppression of STAT3 transcriptional activity. Int J Mol Med. 2018;41(2):859. doi:10.3892/IJMM.2017.3263

Liang X, Wang L, Wang M, et al. MicroRNA-124 inhibits macrophage cell apoptosis via targeting p38/MAPK signaling pathway in atherosclerosis development. Aging (Albany NY). 2020;12(13):13005. doi:10.18632/AGING.103387

Ali Sheikh MS, Alduraywish A, Almaeen A, et al. Therapeutic Value of miRNAs in Coronary Artery Disease. Oxid Med Cell Longev. 2021;2021. doi:10.1155/2021/8853748

Wang J, Yan Y, Song D, Liu B. Reduced Plasma miR-146a Is a Predictor of Poor Coronary Collateral Circulation in Patients with Coronary Artery Disease. Biomed Res Int. 2016;2016. doi:10.1155/2016/4285942

Mc Cormack BA, González-Cantó E, Agababyan C, et al. miRNAs in the Era of Personalized Medicine: From Biomarkers to Therapeutics. Int J Mol Sci. 2021;22(15). doi:10.3390/IJMS22158154

Baker AH, Giacca M. Antagonism of miRNA in heart failure: first evidence in human. Eur Heart J. 2021;42(2):189. doi:10.1093/EURHEARTJ/EHAA967

Nicholls M. Recognition for heart failure breakthrough. Eur Heart J. 2022;43(2):93-94. doi:10.1093/ EURHEARTJ/EHAB321

Downloads

Published

2025-09-09

Issue

Section

Research Article

Categories