Pathophysiology of Coronary Microcirculation Dysfunction
DOI:
https://doi.org/10.52692/1857-0011.2025.1-81.08Keywords:
coronary microcirculation dysfunction, endothelial dysfunction, microvascular spasm, microthrombosis, prognostic biomarkersAbstract
Coronary microcirculation dysfunction (CMD) comprises functional and structural alterations that impede blood flow through the arteriolarcapillary network of the heart. Three pathophysiological patterns have been recognised:(1) impaired microvascular vasodilation, (2) enhanced vasoconstrictor tone, and (3) diffuse microthrombosis. CMD acts both as an ischaemic substrate and as a consequence of reperfusion, being highly prevalent in STEMI/NSTEMI, explaining ischaemia/angina without epicardial obstruction (INOCA/ANOCA, MINOCA), and worsening outcomes in heart failure with preserved ejection fraction, atrial fibrillation, and sudden cardiac death. This review highlights core mechanisms - endothelial dysfunction with nitricoxide depletion, hypertrophic remodelling of resistance arterioles, Rhokinase upregulation, and thromboinflammatory imbalance - and details their expression across clinical phenotypes. A comprehensive understanding supports a diagnostic algorithm combining targeted invasive testing (FFR, IMR, acetylcholine/adenosine challenge) with a mult imarker panel (NO, ET1, GDF15, PCSK9, Lp(a), etc.) and paves the way for personalised therapeutic strategies.
References
Hwang D, Park SH, Koo BK. Ischemia With Nonobstructive Coronary Artery Disease: Concept, Assessment, and Management Open Access. JACC: Asia Archives. 2023; 3(2):169–184.
Zhu, H., Wang, H., Zhu, X. et al. The Importance of Integrated Regulation Mechanism of Coronary Microvascular Function for Maintaining the Stability of Coronary Microcirculation: An Easily Overlooked Perspective. Adv Ther. 2023;40:76–10. https://doi.org/10.1007/s12325-022-02343-7.
Carrington J, Goings D, Raphael C. Phenotypic characterization of coronary microvascular dysfunction using intracoronary provocation agents. JACC Archives. 2024;83(13):858
Buda KG, Mallick S, Kohl LP. Myocardial infarction with nonobstructive coronary arteries: Current management strategies. Cleve Clin J. Med. 2024;2;91(12):743-753. doi: 10.3949/ccjm.91a.19127.
Smilowitz NR, Prasad M, Wodmer RJ. Comprehensive Management of ANOCA, Part 2— Program Development, Treatment, and Research Initiatives: JACC State-of-the-Art Review. Cardiology, 2023;82(12):1264-1279.
Reynolds H, Diaz A, Cyr D et al. Ischemia With Nonobstructive Coronary Arteries: Insights From the ISCHEMIA Trial. JACC: Cardiovascular Imaging. 2023;16(1):63-74. https://doi.org/10.1016/j.jcmg.2022.06.015.
Mehta P, Quesada O, Al-Badri A et al. Ischemia and no obstructive coronary arteries in patients with stable ischemic heart disease. International Journal of Cardiology. 2022; 348:1-8. https://doi.org/10.1016/j.ijcard.2021.12.013.
A. Garcia-Osuna, J. Sans-Rosello, A. Ferrero- Gregori, A. Alquezar -Arbe, A. Sionis, J. Ordóñez- Llanos. Risk assessment after ST-segment elevation myocardial infarction: can biomarkers improve the performance of clinical variables? J. Clin. Med., 2022;11 (5):1266. 10.3390/jcm11051266.
Du, X., Liu, J., Zhou, J. et al. Soluble suppression of tumorigenicity 2 associated with microvascular obstruction in patients with ST-segment elevation myocardial infarction. BMC Cardiovasc Disord. 2024;24:691. https://doi.org/10.1186/s12872-024-04364-2.
Scarcini R, Kotronias R, Della Mora F et al. Angiography-Derived Index of Microcirculatory Resistance to Define the Risk of Early Discharge in STEMI. Circulation: Cardiovascular Interventions.2024;17(3):e013556. https://doi.org/10.1161/CIRCINTERVENTIONS.123.01355.
Dimitriadis, K., Theofilis, P., Koutsopoulos, G. et al. The role of coronary microcirculation in heart failure with preserved ejection fraction: An unceasing odyssey. Heart Fail Rev. 2025;30: 75–88. https://doi.org/10.1007/s10741-024-10445-3.
Velollari O, Rommel KPh, Kresola KP et al. Focusing on microvascular function in heart failure with preserved ejection fraction. Heart Fail Rev. 2025;30(3):493-503 https://doi.org/10.1007/s10741-024-10479-7.
Paolisso P, Gallinoro E, Belmonte M et al. Coronary microvascular dysfunction in patients with heart failure: characterization of patterns in HFrEF versus HFpEF. Circ Heart Fail. 2024;17(1):e010805. doi: 10.1161/CIRCHEARTFAILURE.123.010805.
Merdler I, Sadeghpour A, Asch F, Case B et al. Global Longitudinal Strain in Patients with Coronary Microvascular Dysfunction. https://doi.org/10.1161/circ.150.suppl_1.411314
Dou H., Feher A., Davila A.C., Romero M.J., Patel V.S., Kamath V.M. et al. Role of Adipose tissue endothelial ADAM17 in age-related coronary microvascular dysfunction. Arterioscler. Thromb. Vasc. Biol. 2017;37(6):1180−1193. DOI: 10.1161/ATVBAHA.117.309430.
Roy R, Wang H, Huang S et al. Association of Preeclampsia with Long-Term Coronary Microvascular Dysfunction Utilizing Cardiac Stress Magnetic Resonance Imaging. https://doi.org/10.1161/circ.150.suppl_1.414330.
Dankar R, Wehbi J, Atasi M et al. Coronary microvascular dysfunction, arrythmias, and sudden cardiac death: A literature review. American Heart Journal Plus: Cardiology Research and Practice. 2024;41:100389, https://doi.org/10.1016/j.ahjo.2024.100389.
Ford T, Ong P, Sechtem U et al. Assessment of Vascular Dysfunction in Patients Without Obstructive Coronary Artery Disease: Why, How, and When. JACC: Cardiovascular Interventions. 2020;13(16):1847- 1864, https://doi.org/10.1016/j.jcin.2020.05.052.
Zhu, H., Wang, H., Zhu, X. et al. The Importance of Integrated Regulation Mechanism of Coronary Microvascular Function for Maintaining the Stability of Coronary Microcirculation: An Easily Overlooked
Perspective. Adv Ther. 2020;40:76–101. https://doi.org/10.1007/s12325-022-02343-7.
Galante D, Viceré A, Marrone A et al. Fractional flow reserve (FFR) and index of microcirculatory resistance (IMR) relationship in patients with chronic or stabilized acute coronary syndromes. International Journal of Cardiology. 2025;422:132978. https://doi.org/10.1016/j.ijcard.2025.132978.
Bentea G, Awada A, Berdaoui B. Should We Revisit the Clinical Value of Fractional Flow Reserve in the Era of Coronary Microvascular Dysfunction? Biomedicines. 2025;13(5): 1086. https://doi.org/10.3390/biomedicines13051086.
Ford T. J., Corcoran D., Padmanabhan S., et al. Genetic Dysregulation of Endothelin‐1 is Implicated in Coronary Microvascular Dysfunction. European Heart Journal. 2020, 41: 3239–3252.
Wayne N, Singamneni V, Vnekatesh R et al. Genetic Insights Into Coronary Microvascular Disease Microcirculation. 2025;4;32(1):e12896. doi: 10.1111/micc.12896.
Gurgogline F, Benatti G, Denergi A et al. Coronary mi- crovascular dysfunction: insight on prognosis and future perspectives. Rev Cardiovasc Med. 2025;26(1):25757. https://doi.org/10.31083/RCM25757.
La Vecchia G, Fumarulo I, Caffe A et al. Microvascular Dysfunction across the Spectrum of Heart Failure Pathology: Pathophysiology, Clinical Features and Therapeutic Implications. Int J Mol Sci. 2024;25(14):7628. DOI: 10.3390/ijms25147628.
Galante D, La Vecchia G, Leone A, Vrea F. Coronary microvascular dysfunction in angina and non- obstructive coronary arteries: Pathophysiology, diagnosis, novel markers and therapy. Pol Heart J. 2025;83(3):269-276/ DOI: 10.33963/v.phj.105217.
Boerhout CB,Waard GdW, Lee JM etal Prognosticvalue of structural and functional coronary microvascular dysfunction in patients with non-obstructive coronary artery disease; from the multicentre international ILIAS registry. EuroIntervention. 2022;18:719–728.
Watanabe T, Kanaji Y, Usui E et al. Epicardial Coronary Spasm in Left-Anterior-Descending-Artery and Coronary Microvascular Spasm in Right-Coronary- Artery. JACC: Case Reports. 2025;30(9):103304. https://doi.org/10.1016/j.jaccas.2025.103304.
Rehan R, Wong CCY, Weaver J et al. Multivessel coronary function testing increases diagnostic yield in patients with angina and nonobstructive coronary arteries. JACC Cardiovasc Interv. 2024;17 (9):1091- 1102. 10.1016/j.jcin.2024.03.007.
Del Buono M, Montone R, Camilli M et al. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review FREE ACCESS. JACC. 2021;78 (13): 1352–1371.
Crea F, Montone RA, Rinaldi R. Pathophysiology of coronary microvascular dysfunction. Circ J. 2022, 86(9): 1319–1328. doi: 10.1253/circj.CJ-21-0848.
Milzi A, Dettori R, Lubberich R et al. Coronary microvascular dysfunction is a hallmark of all subtypes of MINOCA. Clin Res Cardiol. 2024;13(12):1622- 1628. doi: 10.1007/s00392-023-02294-1.
Foa A, Canton K, Bodega F et al. Myocardial infarction with nonobstructive coronary arteries: from pathophysiology to therapeutic strategies. J Cardiovasc Med (Hagerstown). 2023;(2):e134-e146. doi: 10.2459/JCM.0000000000001439.
Sucato V, testa G, Puglisi S et al. Myocardial infarction with non-obstructive coronary arteries (MINOCA): Intracoronary imaging-based diagnosis and management. J Cardiol. 2021;77(5):444-451. doi: 10.1016/j.jjcc.2021.01.001.
Takahashi J, Onuma S, Hao K et al. Pathophysiology and diagnostic pathway of myocardial infarction with non-obstructive coronary arteries. J Cardiol. 2024;83(1):17-24. doi: 10.1016/j.jjcc.2023.07.014.
Khattab E, Karelas D, Pallas T et al. MINOCA: A Pathophysiological Approach of Diagnosis and Treatment—A Narrative Review. Biomedicines. 2024;12(11): 2457; https://doi.org/10.3390/biomedi-cines12112457.
Konijnenberg L, Damman P, Duncker D et al. Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction. Cardiovasc Res. 2019; 9;116(4):787–805. doi: 10.1093/cvr/cvz301.
Stone P, Maehara A, Coskun A et al. Role of Low Endothelial Shear Stress and Plaque Characteristics in the Prediction of Nonculprit Major Adverse Cardiac Events: The PROSPECT Study. JACC: Cardiovascular Imaging. 2018;11(3):462-471. https:// doi.org/10.1016/j.jcmg.2017.01.031.
Siasos G, Sara J, Zaromytidou M et al. Local Low Shear Stress and Endothelial Dysfunction in Patients With Nonobstructive Coronary Atherosclerosis. Cardiology. 2018;71(19):2092-2102. https://doi.org/10.1016/j.jacc.2018.02.073.
Flores C, Díez-Delhoyo F, Sanz-Ruiz R et al. Microvascular dysfunction of the non-culprit circulation predicts poor prognosis in patients with ST-segment elevation myocardial infarction. Int J Cardiol Heart Vasc, 2022;15:39:100997. 10.1016/j. ijcha.2022.100997.
Paiva L, Gutiérrez E, Ferreira M, Gonçalves L. Micro- circulation Function in Non-ST-elevation Myocardial Infarction after the Index Event and at Follow-Up. https://doi.org/10.1016/j.cjco.2025.04.005.
Brown B, Watson D, Boatwright W et al. Elevated Levels of Lp(a) are Associated with Circulating Levels of PCSK9 and Coronary Atherosclerosis as Detected by Cardiac Computed Tomography Angiography. In: Pathophysiology of atherosclerosis. 2024;18(4):E577-E578.
Tian R, Wang Z, Zhang S et al. Growth differentiation factor-15 as a biomarker of coronary microvascular dysfunction in ST-segment elevation myocardial infarction. Heliyon. 2024; 10(15):e35476. https://doi.org/10.1016/j.heliyon.2024.e35476.
Ashkrabhu N, Quesada O, Roca Y. INOCA/ANOCA: mechanisms and novel treatment. Am Heart J Plus. 2023;12;30:100302. doi: 10.1016/j.ahjo.2023.100302.
Al-Khayatt B, Perera D, Rahman H. The role of coronary microvascular dysfunction in the pathogenesis of heart failure with preserved ejection fraction. In: American Heart Journal Plus: Cardiology Research and Practice. 2024;41:100387. https://doi.org/10.1016/j.ahjo.2024.100387.
Taqueti V, Solomon S, Shah A et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J. 2018; 39:10. doi:10.1093/eurheartj/ehx721.
Paulus WJ, Zile MR. From systemic inflammation to myocardial fibrosis. Circulation Research. 2021;128:1451–1467. DOI: 10.1161/ CIRCRESAHA.121.318159.
Dryer K, Gajjar M, Narang N et al. Coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Am. J. Physiol. Heart Circ. Physiol., 2018;314:H1033-H1042. https://doi.org/10.1152/ajpheart.00680.2017.
Downloads
Published
License
Copyright (c) 2025 Bulletin of the Academy of Sciences of Moldova. Medical Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.