Патофизиология нарушения коронарной микроциркуляции
DOI:
https://doi.org/10.52692/1857-0011.2025.1-81.08Ключевые слова:
нарушение коронарной микроциркуляции, эндотелиальная дисфункция, микровазоспазм, микротромбоз, прогностические маркёрыАннотация
Нарушение коронарной микроциркуляции (НКМ) - это совокупность функциональноструктурных изменений, приводящих к снижению кровотока в артериолокапиллярном русле миокарда. Выделяют три паттерна: (1) снижение коронарной вазодилатации, (2) преобладание вазоконстрикции и (3) диффузные микротромбозы. НКМ выступает как до и послеинфарктный патогенетический фактор при STEMI/NSTEMI, объясняет ишемию/ангину без стенозов эпикардиальных артерий (INOCA/ANOCA, MINOCA) и утяжеляет прогноз при сердечной недостаточности с сохранённой ФВ, фибрилляции предсердий и внезапной сердечной смерти. Цель исследования - охарактеризовать ключевые механизмы (эндотелиальная дисфункция с дефицитом NO, гипертрофическое ремоделирование артериол, активация Rhoкиназы, тромбовоспалительный дисбаланс) и их клинические особенности при разных фенотипах заболевания. Понимание этих звеньев обосновывает применение функциональных инвазивных тестов(FFR, IMR, пробы с ацетилхолином/аденозином) в сочетании с мультимаркерной панелью (NO, ET1, GDF15, PCSK9, Lp(a) и др.) и открывает возможности для таргетной терапии.
Библиографические ссылки
Hwang D, Park SH, Koo BK. Ischemia With Nonobstructive Coronary Artery Disease: Concept, Assessment, and Management Open Access. JACC: Asia Archives. 2023; 3(2):169–184.
Zhu, H., Wang, H., Zhu, X. et al. The Importance of Integrated Regulation Mechanism of Coronary Microvascular Function for Maintaining the Stability of Coronary Microcirculation: An Easily Overlooked Perspective. Adv Ther. 2023;40:76–10. https://doi.org/10.1007/s12325-022-02343-7.
Carrington J, Goings D, Raphael C. Phenotypic characterization of coronary microvascular dysfunction using intracoronary provocation agents. JACC Archives. 2024;83(13):858
Buda KG, Mallick S, Kohl LP. Myocardial infarction with nonobstructive coronary arteries: Current management strategies. Cleve Clin J. Med. 2024;2;91(12):743-753. doi: 10.3949/ccjm.91a.19127.
Smilowitz NR, Prasad M, Wodmer RJ. Comprehensive Management of ANOCA, Part 2— Program Development, Treatment, and Research Initiatives: JACC State-of-the-Art Review. Cardiology, 2023;82(12):1264-1279.
Reynolds H, Diaz A, Cyr D et al. Ischemia With Nonobstructive Coronary Arteries: Insights From the ISCHEMIA Trial. JACC: Cardiovascular Imaging. 2023;16(1):63-74. https://doi.org/10.1016/j.jcmg.2022.06.015.
Mehta P, Quesada O, Al-Badri A et al. Ischemia and no obstructive coronary arteries in patients with stable ischemic heart disease. International Journal of Cardiology. 2022; 348:1-8. https://doi.org/10.1016/j.ijcard.2021.12.013.
A. Garcia-Osuna, J. Sans-Rosello, A. Ferrero- Gregori, A. Alquezar -Arbe, A. Sionis, J. Ordóñez- Llanos. Risk assessment after ST-segment elevation myocardial infarction: can biomarkers improve the performance of clinical variables? J. Clin. Med., 2022;11 (5):1266. 10.3390/jcm11051266.
Du, X., Liu, J., Zhou, J. et al. Soluble suppression of tumorigenicity 2 associated with microvascular obstruction in patients with ST-segment elevation myocardial infarction. BMC Cardiovasc Disord. 2024;24:691. https://doi.org/10.1186/s12872-024-04364-2.
Scarcini R, Kotronias R, Della Mora F et al. Angiography-Derived Index of Microcirculatory Resistance to Define the Risk of Early Discharge in STEMI. Circulation: Cardiovascular Interventions.2024;17(3):e013556. https://doi.org/10.1161/CIRCINTERVENTIONS.123.01355.
Dimitriadis, K., Theofilis, P., Koutsopoulos, G. et al. The role of coronary microcirculation in heart failure with preserved ejection fraction: An unceasing odyssey. Heart Fail Rev. 2025;30: 75–88. https://doi.org/10.1007/s10741-024-10445-3.
Velollari O, Rommel KPh, Kresola KP et al. Focusing on microvascular function in heart failure with preserved ejection fraction. Heart Fail Rev. 2025;30(3):493-503 https://doi.org/10.1007/s10741-024-10479-7.
Paolisso P, Gallinoro E, Belmonte M et al. Coronary microvascular dysfunction in patients with heart failure: characterization of patterns in HFrEF versus HFpEF. Circ Heart Fail. 2024;17(1):e010805. doi: 10.1161/CIRCHEARTFAILURE.123.010805.
Merdler I, Sadeghpour A, Asch F, Case B et al. Global Longitudinal Strain in Patients with Coronary Microvascular Dysfunction. https://doi.org/10.1161/circ.150.suppl_1.411314
Dou H., Feher A., Davila A.C., Romero M.J., Patel V.S., Kamath V.M. et al. Role of Adipose tissue endothelial ADAM17 in age-related coronary microvascular dysfunction. Arterioscler. Thromb. Vasc. Biol. 2017;37(6):1180−1193. DOI: 10.1161/ATVBAHA.117.309430.
Roy R, Wang H, Huang S et al. Association of Preeclampsia with Long-Term Coronary Microvascular Dysfunction Utilizing Cardiac Stress Magnetic Resonance Imaging. https://doi.org/10.1161/circ.150.suppl_1.414330.
Dankar R, Wehbi J, Atasi M et al. Coronary microvascular dysfunction, arrythmias, and sudden cardiac death: A literature review. American Heart Journal Plus: Cardiology Research and Practice. 2024;41:100389, https://doi.org/10.1016/j.ahjo.2024.100389.
Ford T, Ong P, Sechtem U et al. Assessment of Vascular Dysfunction in Patients Without Obstructive Coronary Artery Disease: Why, How, and When. JACC: Cardiovascular Interventions. 2020;13(16):1847- 1864, https://doi.org/10.1016/j.jcin.2020.05.052.
Zhu, H., Wang, H., Zhu, X. et al. The Importance of Integrated Regulation Mechanism of Coronary Microvascular Function for Maintaining the Stability of Coronary Microcirculation: An Easily Overlooked
Perspective. Adv Ther. 2020;40:76–101. https://doi.org/10.1007/s12325-022-02343-7.
Galante D, Viceré A, Marrone A et al. Fractional flow reserve (FFR) and index of microcirculatory resistance (IMR) relationship in patients with chronic or stabilized acute coronary syndromes. International Journal of Cardiology. 2025;422:132978. https://doi.org/10.1016/j.ijcard.2025.132978.
Bentea G, Awada A, Berdaoui B. Should We Revisit the Clinical Value of Fractional Flow Reserve in the Era of Coronary Microvascular Dysfunction? Biomedicines. 2025;13(5): 1086. https://doi.org/10.3390/biomedicines13051086.
Ford T. J., Corcoran D., Padmanabhan S., et al. Genetic Dysregulation of Endothelin‐1 is Implicated in Coronary Microvascular Dysfunction. European Heart Journal. 2020, 41: 3239–3252.
Wayne N, Singamneni V, Vnekatesh R et al. Genetic Insights Into Coronary Microvascular Disease Microcirculation. 2025;4;32(1):e12896. doi: 10.1111/micc.12896.
Gurgogline F, Benatti G, Denergi A et al. Coronary mi- crovascular dysfunction: insight on prognosis and future perspectives. Rev Cardiovasc Med. 2025;26(1):25757. https://doi.org/10.31083/RCM25757.
La Vecchia G, Fumarulo I, Caffe A et al. Microvascular Dysfunction across the Spectrum of Heart Failure Pathology: Pathophysiology, Clinical Features and Therapeutic Implications. Int J Mol Sci. 2024;25(14):7628. DOI: 10.3390/ijms25147628.
Galante D, La Vecchia G, Leone A, Vrea F. Coronary microvascular dysfunction in angina and non- obstructive coronary arteries: Pathophysiology, diagnosis, novel markers and therapy. Pol Heart J. 2025;83(3):269-276/ DOI: 10.33963/v.phj.105217.
Boerhout CB,Waard GdW, Lee JM etal Prognosticvalue of structural and functional coronary microvascular dysfunction in patients with non-obstructive coronary artery disease; from the multicentre international ILIAS registry. EuroIntervention. 2022;18:719–728.
Watanabe T, Kanaji Y, Usui E et al. Epicardial Coronary Spasm in Left-Anterior-Descending-Artery and Coronary Microvascular Spasm in Right-Coronary- Artery. JACC: Case Reports. 2025;30(9):103304. https://doi.org/10.1016/j.jaccas.2025.103304.
Rehan R, Wong CCY, Weaver J et al. Multivessel coronary function testing increases diagnostic yield in patients with angina and nonobstructive coronary arteries. JACC Cardiovasc Interv. 2024;17 (9):1091- 1102. 10.1016/j.jcin.2024.03.007.
Del Buono M, Montone R, Camilli M et al. Coronary Microvascular Dysfunction Across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review FREE ACCESS. JACC. 2021;78 (13): 1352–1371.
Crea F, Montone RA, Rinaldi R. Pathophysiology of coronary microvascular dysfunction. Circ J. 2022, 86(9): 1319–1328. doi: 10.1253/circj.CJ-21-0848.
Milzi A, Dettori R, Lubberich R et al. Coronary microvascular dysfunction is a hallmark of all subtypes of MINOCA. Clin Res Cardiol. 2024;13(12):1622- 1628. doi: 10.1007/s00392-023-02294-1.
Foa A, Canton K, Bodega F et al. Myocardial infarction with nonobstructive coronary arteries: from pathophysiology to therapeutic strategies. J Cardiovasc Med (Hagerstown). 2023;(2):e134-e146. doi: 10.2459/JCM.0000000000001439.
Sucato V, testa G, Puglisi S et al. Myocardial infarction with non-obstructive coronary arteries (MINOCA): Intracoronary imaging-based diagnosis and management. J Cardiol. 2021;77(5):444-451. doi: 10.1016/j.jjcc.2021.01.001.
Takahashi J, Onuma S, Hao K et al. Pathophysiology and diagnostic pathway of myocardial infarction with non-obstructive coronary arteries. J Cardiol. 2024;83(1):17-24. doi: 10.1016/j.jjcc.2023.07.014.
Khattab E, Karelas D, Pallas T et al. MINOCA: A Pathophysiological Approach of Diagnosis and Treatment—A Narrative Review. Biomedicines. 2024;12(11): 2457; https://doi.org/10.3390/biomedi-cines12112457.
Konijnenberg L, Damman P, Duncker D et al. Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction. Cardiovasc Res. 2019; 9;116(4):787–805. doi: 10.1093/cvr/cvz301.
Stone P, Maehara A, Coskun A et al. Role of Low Endothelial Shear Stress and Plaque Characteristics in the Prediction of Nonculprit Major Adverse Cardiac Events: The PROSPECT Study. JACC: Cardiovascular Imaging. 2018;11(3):462-471. https:// doi.org/10.1016/j.jcmg.2017.01.031.
Siasos G, Sara J, Zaromytidou M et al. Local Low Shear Stress and Endothelial Dysfunction in Patients With Nonobstructive Coronary Atherosclerosis. Cardiology. 2018;71(19):2092-2102. https://doi.org/10.1016/j.jacc.2018.02.073.
Flores C, Díez-Delhoyo F, Sanz-Ruiz R et al. Microvascular dysfunction of the non-culprit circulation predicts poor prognosis in patients with ST-segment elevation myocardial infarction. Int J Cardiol Heart Vasc, 2022;15:39:100997. 10.1016/j. ijcha.2022.100997.
Paiva L, Gutiérrez E, Ferreira M, Gonçalves L. Micro- circulation Function in Non-ST-elevation Myocardial Infarction after the Index Event and at Follow-Up. https://doi.org/10.1016/j.cjco.2025.04.005.
Brown B, Watson D, Boatwright W et al. Elevated Levels of Lp(a) are Associated with Circulating Levels of PCSK9 and Coronary Atherosclerosis as Detected by Cardiac Computed Tomography Angiography. In: Pathophysiology of atherosclerosis. 2024;18(4):E577-E578.
Tian R, Wang Z, Zhang S et al. Growth differentiation factor-15 as a biomarker of coronary microvascular dysfunction in ST-segment elevation myocardial infarction. Heliyon. 2024; 10(15):e35476. https://doi.org/10.1016/j.heliyon.2024.e35476.
Ashkrabhu N, Quesada O, Roca Y. INOCA/ANOCA: mechanisms and novel treatment. Am Heart J Plus. 2023;12;30:100302. doi: 10.1016/j.ahjo.2023.100302.
Al-Khayatt B, Perera D, Rahman H. The role of coronary microvascular dysfunction in the pathogenesis of heart failure with preserved ejection fraction. In: American Heart Journal Plus: Cardiology Research and Practice. 2024;41:100387. https://doi.org/10.1016/j.ahjo.2024.100387.
Taqueti V, Solomon S, Shah A et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J. 2018; 39:10. doi:10.1093/eurheartj/ehx721.
Paulus WJ, Zile MR. From systemic inflammation to myocardial fibrosis. Circulation Research. 2021;128:1451–1467. DOI: 10.1161/ CIRCRESAHA.121.318159.
Dryer K, Gajjar M, Narang N et al. Coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Am. J. Physiol. Heart Circ. Physiol., 2018;314:H1033-H1042. https://doi.org/10.1152/ajpheart.00680.2017.
Загрузки
Опубликован
Лицензия
Copyright (c) 2025 Вестник Академии Наук Молдовы. Медицина

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.