VARIAȚIILE CIRCADIENE A NEUROTRANSMIȚĂTORILOR ȘI TULBURĂRILE COGNITIVE

Autori

  • Irina IURCU IP Universitatea de Stat de Medicină și Farmacie „N. Testemițanu”
  • Adrian LUPUȘOR IP Universitatea de Stat de Medicină și Farmacie „N. Testemițanu”; IMSP Institutul de Neurologie și Neurochirurgie „D. Gherman”
  • Madalina CEBUC IP Universitatea de Stat de Medicină și Farmacie „N. Testemițanu”
  • Lilia ROTARU IMSP Institutul de Neurologie și Neurochirurgie „D. Gherman”
  • Stela ODOBESCU IMSP Institutul de Neurologie și Neurochirurgie „D. Gherman”
  • Oxana GROSU IMSP Institutul de Neurologie și Neurochirurgie „D. Gherman”
  • Svetlana LOZOVANU IP Universitatea de Stat de Medicină și Farmacie „N. Testemițanu”
  • Ion MOLDOVANU IP Universitatea de Stat de Medicină și Farmacie „N. Testemițanu”; IMSP Institutul de Neurologie și Neurochirurgie „D. Gherman”
  • Victor VOVC IP Universitatea de Stat de Medicină și Farmacie „N. Testemițanu”; IMSP Institutul de Neurologie și Neurochirurgie „D. Gherman”

DOI:

https://doi.org/10.52692/1857-0011.2023.3-77.47

Cuvinte cheie:

ritm circadian, neurotransmițători, funcții cognitive, boli neurodegenerative

Rezumat

Pentru a anticipa și a se adapta la evenimentele zilnice recurente determinate de rotația pământului, organismele prezintă mecanisme de reglare menite să controleze homeostazia în diferite condiții de iluminare, numite ritm circadian (RC). RC reprezintă o rețea biologică endogenă responsabilă de coordonarea ciclurilor timp de 24 de ore la nivel genetic, biochimic, fiziologic și comportamental. Sistemele de control ale RC transmit semnale ale timpului în întregul organism, toate procesele interne prezentând un nivel de activitate diurn maxim și minim gestionat prin intermediul modulării neurotransmisiei în structurile neuronale cheie.Cunoașterea variaţiilor cotidiene ale activității neurotransmițătorilor în sistemul nervos central este esențială în stabilirea mecanismelor eficiente de neuroprotecție. Acest studiu sintetizează cunoștințele actuale privind interacțiunea dintre ritm circadian, fluctuații ale neurotransmițătorilor, precum și impactul acestora asupra neuroprotecției și sănătății mintale.

Biografii autori

Lilia ROTARU, IMSP Institutul de Neurologie și Neurochirurgie „D. Gherman”

dr. în șt. med., conf. cercet.

Stela ODOBESCU, IMSP Institutul de Neurologie și Neurochirurgie „D. Gherman”

r. hab. în șt. med., conf. cercet.

Oxana GROSU, IMSP Institutul de Neurologie și Neurochirurgie „D. Gherman”

dr. în șt. med.

Svetlana LOZOVANU, IP Universitatea de Stat de Medicină și Farmacie „N. Testemițanu”

r. în șt. med., conf. univer.,

Ion MOLDOVANU, IP Universitatea de Stat de Medicină și Farmacie „N. Testemițanu”; IMSP Institutul de Neurologie și Neurochirurgie „D. Gherman”

dr. hab. în șt. med., prof. univer.

Victor VOVC, IP Universitatea de Stat de Medicină și Farmacie „N. Testemițanu”; IMSP Institutul de Neurologie și Neurochirurgie „D. Gherman”

dr. hab. în șt. med., prof. univer.

Referințe

Rizo J. Mechanism of neurotransmitter release coming into focus, Protein Sci. 2018; 27(8): 1364–1391.

Albrecht U. and Ripperger J. A. Circadian Clocks and Sleep: Impact of Rhythmic Metabolism and Waste Clearance on the Brain, Trends Neurosci.2018, 41(10): 677–688.

Morrison E. H. Neuroanatomy, Nucleus Suprachiasmatic, Neuroanatomy, Nucleus Suprachiasmatic, 2022.

Taillard J., Sagaspe P., Philip P., and Bioulac S. Sleep timing, chronotype and social jetlag: Impact on cognitive abilities and psychiatric disorders, Biochem. Pharmacol.2021, 191.

Huang R. C. The discoveries of molecular mechanisms for the circadian rhythm: The 2017 Nobel Prize in Physiology or Medicine, Biomed. J.2018; 41(1): 5–8.

Fisk A. S., Tam S. K. E., Brown L. A., Vyazovskiy V. V., Bannerman D. M., and Peirson S. N. Light and cognition: Roles for circadian rhythms, sleep, and arousal, Front. Neurol.2018; 9: 1–18.

Wolff M. and Vann S. D. The cognitive thalamus as a gateway to mental representations. J. Neurosci. 2019; 39(1): 3–14.

Estrada-Rojo F., Escobar C., and Navarro L. Circadian variations of neurotransmitters in the brain – Its importance for neuroprotection. Rev. Mex. Neurocienc.2020; 21(1): 31–38.

Williams S. J., Meadows R., and Coveney C. M. Desynchronised times? Chronobiology, (bio)medicalisation and the rhythms of life itself’. Sociol. Heal. Illn. 2021; 43(6): 1501–1517.

Xu S., Akioma M., and Yuan Z. Relationship between circadian rhythm and brain cognitive functions. Front. Optoelectron.2021; 14(3): 278–287.

Jiménez-Zárate B. S., Piña-Leyva C., RodríguezSánchez M., Florán-Garduño B., Jiménez-Zamudio L. A., and Jiménez-Estrada I. Day-night variations in the concentration of neurotransmitters in the rat lumbar spinal cord. J. Circadian Rhythms.2021; 9(1): 1–8.

Kiehn J. T., Faltraco F., Palm D., Thome J., and Oster H. Circadian Clocks in the Regulation of Neurotransmitter Systems. Pharmacopsychiatry.2018; 56(3): 108–117.

Kant R., Meena M. K., and Pathania M. Dopamine: a modulator of circadian rhythms/biological clock. Int. J. Adv. Med.2021; 8(2): 316.

Błaszczyk J. W. Energy metabolism decline in the aging brain—pathogenesis of neurodegenerative disorders. Metabolites.2020; 10(11):1–20.

Ashton A. and Jagannath A. Disrupted Sleep and Circadian Rhythms in Schizophrenia and Their Interaction With Dopamine Signaling. Front. Neurosci.2020; 14:1–14.

Daut R. A. and Fonken L. K. Circadian regulation of depression: A role for serotonin. Front. Neuroendocrinol.2019; 54.

Mcclenathan J. Serotonin Keeps You Sad and Sleep.2013: 93–102.

Tsai S. Y., O’Brien T. E., and McNulty J. A A. Microglia play a role in mediating the effects of cytokines on the structure and function of the rat pineal gland. Cell Tissue Res.2001; 303(3): 423–431.

Dhangar R. R., Kale P. P., Kadu P. K., and Prabhavalkar K. Possible Benefits of Considering Glutamate with Melatonin or Orexin or Oxytocin as a Combination Approach in the Treatment of Anxiety. Curr. Pharmacol. Reports.2020; 6(1).

Huber N. et al. Deficient neurotransmitter systems and synaptic function in frontotemporal lobar degeneration—Insights into disease mechanisms and current therapeutic approaches. Mol. Psychiatry.2022; 27(3):1300–1309.

Ono D., Honma K., Yanagawa Y., Yamanaka A., and Honma S. Role of GABA in the regulation of the central circadian clock of the suprachiasmatic nucleus. J. Physiol. Sci.2018; 68(4): 333–343.

Roy J., Tsui K. C., Ng J., Fung M. L., and Lim L. W. Regulation of melatonin and neurotransmission in Alzheimer’s disease. Int. J. Mol. Sci.2021; 22(13).

Palm D., Uzoni A., Simon F., Tucha O., Thome J., and Faltraco F. Norepinephrine influences the circadian clock in human dermal fibroblasts from study participants with a diagnosis of attention-deficit hyperactivity disorder. J. Neural Transm.2021; 128(7):1147–1157.

Pham L. et al. The interplay between mast cells, pineal gland, and circadian rhythm: Links between histamine, melatonin, and inflammatory mediators. 2021; 70(2).

Villano I. et al. Physiological Role of Orexinergic System for Health. Int. J. Environ. Res. Public Health.2022; 19(14).

Cao J., Ribelayga C. P., and Mangel S. C. A Circadian Clock in the Retina Regulates Rod-Cone Gap Junction Coupling and Neuronal Light Responses via Activation of Adenosine A2A Receptors. Front. Cell. Neurosci.2021; 14: 1–18.

Sánchez S., Paredes S. D., Sánchez C. L., Barriga C., Reiter R. J., and Rodríguez A. B. Tryptophan administration in rats enhances phagocytic function and reduces oxidative metabolism, Neuroendocrinol. Lett.2008; 29(6): 1026–103.

Tuomisto L., Lozeva V., Valjakka A., and Lecklin A. Modifying effects of histamine on circadian rhythms and neuronal excitability. Behav. Brain Res.2001; 124(2): 129–135.

Marston O. J., Williams R. H., Canal M. M., Samuels R. E., Upton N., and Piggins H. D. Circadian and dark-pulse activation of orexin/hypocretin neurons. Mol. Brain.2008; 1:19.

Volk C., Jaramillo V., Merki R., O’Gorman Tuura R., and Huber R. Diurnal changes in glutamate + glutamine levels of healthy young adults assessed by proton magnetic resonance spectroscopy. Hum. Brain Mapp.2018; 39(10): 3984–3992.

Chagoya De Sanchez V. Circadian variations of adenosine and of its metabolism. Could adenosine be a molecular oscillator for circadian rhythms? Can. J. Physiol. Pharmacol.1995; 73(3): 339–355.

Descărcări

Publicat

2024-01-22

Număr

Secțiune

Articol de cercetare

##category.category##