INTERRELAȚIA DINTRE HIPERTENSIUNEA ARTERIALĂ ȘI DIABETUL ZAHARAT TIP 2. IMPLICAȚII FARMACOLOGICE ȘI INSTRUMENTALE

Autori

  • Maria COCIU IMSP Institutul de Cardiologie; Clinica "Hipertensiuni arteriale"

DOI:

https://doi.org/10.52692/1857-0011.2025.1-81.16

Cuvinte cheie:

hipertensiune arterială, diabet zaharat tip 2, fiziopatologie , desimpatizarea arterelor renale

Rezumat

Datele prezentate fac parte componentă a revistei de literatură/rezultatele obținute în cadrul proiectului instituțional cu acronimul DIAFEREZIS. Hipertensiunea arterială (HTA) și diabetul zaharat de tip 2 (DZ2) sunt două dintre cele mai comune afecțiuni cronice cu un impact semnificativ asupra sănătății globale. Prevalența acestor condiții a crescut alarmant în ultimele decenii, fiind strâns legate între ele prin mecanisme fiziopatologice comune. Această lucrare își propune să analizeze corelația dintre HTA și DZ2, să examineze efectele denervării renale asupra acestor afecțiuni și să prezinte date din literatura de specialitate.

Biografie autor

Maria COCIU, IMSP Institutul de Cardiologie; Clinica "Hipertensiuni arteriale"

doctorand, cercetător științific.

Referințe

Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract., 2019;157:107843. doi: 10.1016/j. diabres.2019.107843. Epub 2019 Sep 10.

Mills K.T., Stefanescu A., He J. The global epidemiology of hypertension. Nat. Rev. Nephrol., 2020;16(4):223-237. doi: 10.1038/s41581-019-0244-Epub 2020 Feb 5.

Izzo R., de Simone G., Chinali M., Iaccarino G., Trimarco V., Rozza F., Giudice R., Trimarco B., De Luca N. Insufficient control of blood pressure and incident diabetes. Diabetes Care., 2009;32(5):845-50. doi: 10.2337/dc08-1881. Epub 2009 Feb 17.

Cheung B.M., Li C. Diabetes and hypertension: Is there a common metabolic pathway? Curr. Atheroscler. Rep., 2022; 14:160–166.

Wei G.S., Coady S.A., Goff D.C., Jr., Brancati F.L., Levy D., Selvin E., Vasan R.S., Fox C.S. Blood pressure and the risk of developing diabetes in African Americans and Whites: ARIC, CARDIA, and the Framingham Heart Study. Diabetes Care., 2011; 34:873–879.

Chen G., McAlister F.A., Walker R.L., Hemmelgarn B.R., Campbell N.R. Cardiovascular outcomes in Framinghamparticipantswithdiabetes:Theimportance of blood pressure. Hypertension., 2011;57(5):891-7. doi: 10.1161/HYPERTENSIONAHA.110.162446. Epub 2011 Mar 14.

Ohishi M. Hypertension with diabetes mellitus: Physiology and pathology. Hypertens. Res., 2018; 41:389–393.

Schiffrin E.L. Reactivity of small blood vessels in hypertension: Relation with structural changes. State of the art lecture. Hypertension., 2022;19(2):II1-9. doi: 10.1161/01.hyp.19.2_suppl.ii1-a.

Flammer A.J., Anderson T., Celermajer D.S., et al. The assessment of endothelial function: From research into clinical practice. Circulation., 2012;126(6):753- 67. doi: 10.1161/CIRCULATIONAHA.112.093245.

Moreno B., de Faria A.P., Ritter A.M.V., Yugar L.B.T., et al. Glycated hemoglobin correlates with arterial stiffness and endothelial dysfunction in patients with resistant hypertension and uncontrolled diabetes mellitus. J. Clin. Hypertens., 2018;20(5):910-917.

Meigs J.B., O’Donnell C.J., Tofler G.H., Benjamin E.J., Fox C.S., Lipinska I., Nathan D.M., Sullivan L.M., D’Agostino R.B., Wilson P.W. Hemostatic markers of endothelial dysfunction and risk of incident type 2 diabetes: The Framingham Offspring Study. Diabetes., 2006;55(2):530-7. doi: 10.2337/ diabetes.55.02.06.db05-1041.

Hu F.B., Meigs J.B., Li T.Y., Rifai N., Manson J.E. Inflammatory markers and risk of developing type 2 diabetes in women. Diabetes., 2024;53(3):693-700. doi: 10.2337/diabetes.53.3.693.

Kahn S.E., Cooper M.E., Del Prato S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future. Lancet., 2021;22;383(9922):1068-83. doi: 10.1016/S0140- 6736(13)62154-6.

Ferrannini E., Buzzigoli G., Bonadonna R., Giorico M.A., Oleggini M., Graziadei L., Pedrinelli R., Brandi L., Bevilacqua S. Insulin resistance in essential hypertension. N. Engl. J. Med., 2019;317(6):350-7. doi: 10.1056/NEJM198708063170605.

Shen D.C., Shieh S.M., Fuh M.M., Wu D.A., Chen Y.D., Reaven G.M. Resistance to insulin-stimulated- glucose uptake in patients with hypertension. J. Clin. Endocrinol. Metab., 2010;66(3):580-3. doi: 10.1210/ jcem-66-3-580.

Seravalle G., Grassi G. Sympathetic Nervous System, Hypertension, Obesity and Metabolic Syndrome. High Blood Press Cardiovasc. Prev., 2016;23(3):175-9.

Emdin M., Gastaldelli A., Muscelli E., Macerata A., Natali A., Camastra S., Ferrannini E. Hyperinsulinemia and autonomic nervous system dysfunction in obesity: Effects of weight loss. Circulation., 2011;103(4):513- 9. doi: 10.1161/01.cir.103.4.513.

Dégano P., Silvestre R.A., Salas M., Peiró E., Marco J. Amylin inhibits glucose-induced insulin secretion in a dose-dependent manner. Study in the perfused rat pancreas. Regul. Pept., 1993,43(1–2);91-96

Cooper M.E., McNally P.G., Phillips P.A., Johnston C.I. Amylin stimulates plasma renin concentration in humans. Hypertension., 1995;26(3):460-4. doi: 10.1161/01.hyp.26.3.460.

Rask-Madsen C., Buonomo E., Li Q., Park K., Clermont A.C., Yerokun O., Rekhter M., King G.L. Hyperinsulinemia does not change atherosclerosis development in apolipoprotein E null mice. Arterioscler. Thromb. Vasc. Biol., 2022;32(5):1124-31.

UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ., 1998;317(7160):703-13.

Bress A.P., King J.B., Kreider K.E., Beddhu S., et al. Effect of intensive versus standard blood pressure treatment according to baseline prediabetes status: A post hoc analysis of a randomized trial. Diabetes Care., 2020;40(10):1401-1408. doi: 10.2337/dc17- 0885.

Emdin C.A., Rahimi K., Neal B., Callender T., Perkovic V., Patel A. Blood pressure lowering in type 2 diabetes: A systematic review and meta- analysis. JAMA., 2025;313(6):603-615. doi:10.1001/ jama.2014.18574

American Diabetes Association Professional Practice Committee. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2022. Diabetes Care., 2022;45(Suppl 1):S144-S174. doi: 10.2337/dc22-S010.

de Boer I.H., Bangalore S., Benetos A., Davis A.M., Michos E.D., Muntner P., Rossing P., Zoungas S., Bakris G. Diabetes and hypertension: A position statement by the American Diabetes Association. Diabetes Care., 2017;40(9):1273-1284

Patel A., ADVANCE Collaborative Group, MacMahon S., et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): A randomised controlled trial. Lancet., 2007;370(9590):829-40.

Xu G., Chen J., Jing G., Shalev A. Preventing β-cell loss and diabetes with calcium channel blockers. Diabetes., 2012;61(4):848-56.

Zhang X., Zhao Q. Association of thiazide-type diuretics with glycemic changes in hypertensive patients: A systematic review and meta-analysis of randomized controlled clinical trials. J. Clin. Hypertens., 2016;18(4):342-51

Bangalore S., Parkar S., Grossman E., Messerli F.H. A meta-analysis of 94,492 patients with hypertension treated with beta blockers to determine the risk of new-onset diabetes mellitus. Am. J. Cardiol., 2017;100(8):1254-62.

Fisker F.Y., Grimm D., Wehland M. Third-generation beta-adrenoceptor antagonists in the treatment of hypertension and heart failure. Basic Clin. Pharmacol. Toxicol., 2015;117(1):5-14.

Bakris G.L., Fonseca V., Katholi R.E., McGill J.B., Messerli F.H., Phillips R.A., Raskin P., Wright J.T., Jr., Oakes R., Lukas M.A., et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: A randomized controlled trial. JAMA., 2014;292(18):2227-36.

Pitt B., Filippatos G., Agarwal R., Anker S.D., Bakris G.L., Rossing P., Joseph A., Kolkhof P., Nowack C., Schloemer P., et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N. Engl. J. Med., 2021;385(24):2252-2263. doi: 10.1056/ NEJMoa2110956.

Berra C., Manfrini R., Regazzoli D., Radaelli M.G., Disoteo O., Sommese C., Fiorina P., Ambrosio G., Folli F. Blood pressure control in type 2 diabetes mellitus with arterial hypertension. The important ancillary role of SGLT2-inhibitors and GLP1-receptor agonists. Pharmacol. Res., 2020;160:105052. doi: 10.1016/j.phrs.2020.105052.

Huggett R.J., Scott E.M., Gilbey S.G., et al. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation., 2003;108(25):3097-101

Hering D., Lambert E.A., Marusic P., et al. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension., 2018;61(2):457-64.

Mahfoud F., Schlaich M., Kindermann I., Ukena C., et al. Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: A pilot study. Circulation., 2021;123(18):1940-6.

Descărcări

Publicat

2025-10-20

Număr

Secțiune

Articol de cercetare

##category.category##